针对OGB图分类任务中的两个分子图数据集和一个蛋白质关联子图数据集,我们通过引入PAS(池架构搜索)设计一个图形神经网络框架,用于图形分类任务。同时,我们根据GNN拓扑设计方法F2GNN进行改进GNN培训。最后,在这三个数据集上实现了性能突破,这比具有固定聚合功能的其他方法要好得多。事实证明,NAS方法具有多个任务的高概括能力以及我们在处理图形属性预测任务方面的优势。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)在不同的现实应用中表现出卓越的性能。为了提高模型容量,除了设计聚合运作,GNN拓扑设计也非常重要。一般来说,有两个主流GNN拓扑设计方式。第一个是堆叠聚合操作以获得更高级别的功能,但随着网络更深的方式,易于进行性能下降。其次,在每个层中使用多聚合操作,该层在本地邻居提供足够和独立的特征提取阶段,同时获得更高级别的信息昂贵。为了享受减轻这两个方式的相应缺陷的同时享受福利,我们学会在一个新颖的特征融合透视中设计GNN的拓扑,这些融合透视中被称为F $ ^ 2 $ GNN。具体而言,我们在设计GNN拓扑中提供了一个特征融合视角,提出了一种新颖的框架,以统一现有的拓扑设计,具有特征选择和融合策略。然后,我们在统一框架之上开发一个神经结构搜索方法,该方法包含在搜索空间中的一组选择和融合操作以及改进的可微分搜索算法。八个现实数据集的性能增益展示了F $ ^ 2 $ GNN的有效性。我们进一步开展实验,以证明F $ ^ 2 $ GNN可以通过自适应使用不同程度的特征来缓解现有GNN拓扑设计方式的缺陷,同时提高模型容量,同时减轻了现有的GNN拓扑设计方式的缺陷,特别是缓解过平滑问题。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)在现实世界数据集上对不同应用的不同应用表现出卓越的性能。为了提高模型能力并减轻过平滑问题,提出了几种方法通过层面连接来掺入中间层。但是,由于具有高度多样化的图形类型,现有方法的性能因不同的图形而异,导致需要数据特定的层面连接方法。为了解决这个问题,我们提出了一种基于神经结构搜索(NAS)的新颖框架LLC(学习层面连接),以学习GNN中中间层之间的自适应连接。 LLC包含一个新颖的搜索空间,由3种类型的块和学习连接以及一个可分辨率搜索过程组成,以实现有效的搜索过程。对五个现实数据集进行了广泛的实验,结果表明,搜索的层面连接不仅可以提高性能,而且还可以缓解过平滑的问题。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
Adversarial robustness assessment for video recognition models has raised concerns owing to their wide applications on safety-critical tasks. Compared with images, videos have much high dimension, which brings huge computational costs when generating adversarial videos. This is especially serious for the query-based black-box attacks where gradient estimation for the threat models is usually utilized, and high dimensions will lead to a large number of queries. To mitigate this issue, we propose to simultaneously eliminate the temporal and spatial redundancy within the video to achieve an effective and efficient gradient estimation on the reduced searching space, and thus query number could decrease. To implement this idea, we design the novel Adversarial spatial-temporal Focus (AstFocus) attack on videos, which performs attacks on the simultaneously focused key frames and key regions from the inter-frames and intra-frames in the video. AstFocus attack is based on the cooperative Multi-Agent Reinforcement Learning (MARL) framework. One agent is responsible for selecting key frames, and another agent is responsible for selecting key regions. These two agents are jointly trained by the common rewards received from the black-box threat models to perform a cooperative prediction. By continuously querying, the reduced searching space composed of key frames and key regions is becoming precise, and the whole query number becomes less than that on the original video. Extensive experiments on four mainstream video recognition models and three widely used action recognition datasets demonstrate that the proposed AstFocus attack outperforms the SOTA methods, which is prevenient in fooling rate, query number, time, and perturbation magnitude at the same.
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译